Disambiguating Signs: Deep Learning-based Gloss-level Classification for German Sign Language by Utilizing Mouth Actions

Dinh Nam Pham, Vera Czehmann and Eleftherios Avramidis German Research Center for Artificial Intelligence (DFKI Berlin)

Introduction

• Sign languages (SL) are multi-channeled languages, relying on visual-spatial components to communicate

Mouth actions

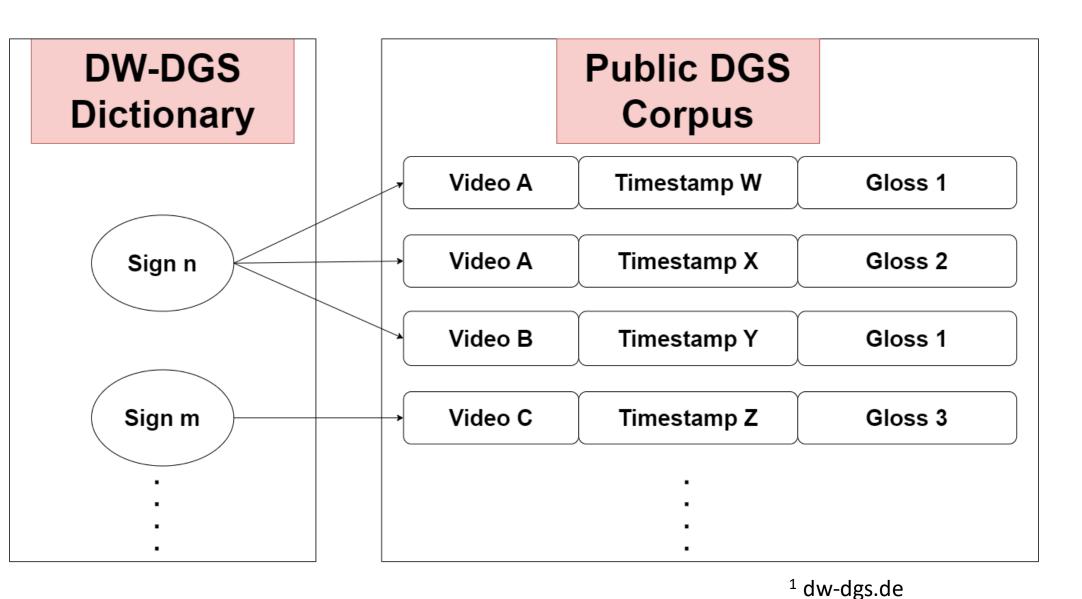
- Use of the mouth complements manual signing
- Limited research on the topic so far
- At least 3 functions:
 - Meaning specification
 - Sole carrier of meaning
 - Disambiguation (distinguishing homonyms like Schwester/Bruder; sister/brother in German SL)

Objective

Dataset

Source

- Entries in the DW-DGS Dictionary¹ represent manual signs
- Includes concordance to DGS Corpus² with corresponding timestamps of glosses \rightarrow Occurrences of manual signs with different glosses (core meanings)



- Evaluate the importance of the mouth area in Automatic Sign Language Recognition systems by training a model on ambiguous signs using:
 - (a) upper body and hands,
 - (b) mouth only,
 - (c) both combined.

Preprocessing

- Mouth and upper body/hands extracted
- Scaled to 150x100px
- Fixed length of 28 frames by repeatedly appending the last frame
- Applied RandAugment on training set as data augmentation
- Pixel values normalised

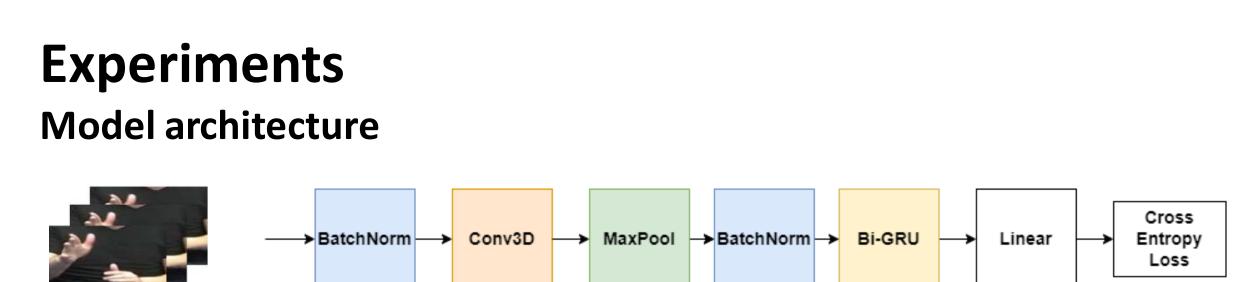
Criteria for the selection of signs

² https://doi.org/10.25592/dgs.corpus-3.0

- Concordance contains two glosses with: \bullet
 - Different meanings
 - Sufficient amount of instances for training
- Manual signs of the two glosses are indeed nearly identical in both hand form ۲ and movement (manually checked)

Key details

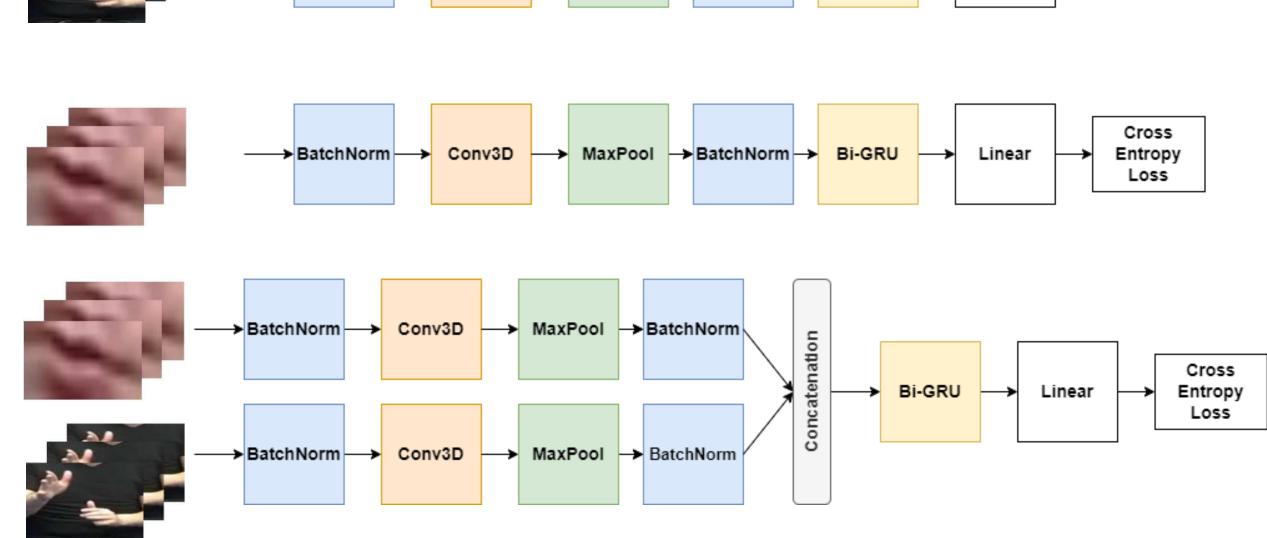
- 12 classes: 6 pairs of two glosses from the same sign
- Fluent, including Deaf, signers from all around Germany
- 2948 instances, 640x360px, 50 FPS
- Ensured equal instance numbers for gloss pairs by random removal from the gloss with more instances
- Training-validation-test split with 8:1:1 ratio \bullet



Results

Accuracies of the model for the regions of interests

ROI	Validation Accuracy	Test Accuracy		
upper body (hands)	62.7%	63.3%		
mouth mouth + upper body (hands)	44.9% 69.9%	40.7% 68.0%		



Experiment setup

- 5000 epochs for each experiment, best performing weights for validation and testing
- Batch size: 32, adam optimizer with initial learning rate of 10⁻⁵
- NVIDIA GeForce GTX 1080 Ti \bullet
- Runtime of 3 days for first two experiments and 7 days for the last one

Performance for the glosses in the test set

Gloss (Translation)	No. of Instances	F1-score		Pairwise False Negatives			
		upper body (hands)	mouth	upper body (hands) + mouth		mouth	upper body (hands) + mouth
FERTIG1A (finished) SCHON1A (already)	344 344	60.0% 61.3%			4.3% 3.3%	11.4% 5.7%	3.7% 1.7%
GEHÖREN1* (belong) MEIN1 (my)	303 303	57.7% 81.2%			2.0% 1.0%	12.9% 9.7%	2.0% 1.7%
GUT1 (good) SCHÖN3 (nice)	85 85	12.5% 53.3%	0.0% 0.0%	21.1% 33.3%	0.7% 1.0%	11.1% 11.1%	0.0% 1.7%
WAR1 (was) FRÜHER1* (earlier)	277 277	69.0% 65.4%			1.3% 3.0%	7.1% 0.0%	2.3% 1.3%
NUR2A (only) WENN1A (if)	370 370	64.9% 65.0%			4.0% 2.7%	10.8% 18.9%	2.0% 2.0%
GLEICH1A* (even) WIE3A (like)	95 95	47.6% 66.7%			0.3% 1.0%	0.0% 0.0%	0.0% 1.0%

Discussion

• Model with combined input achieved highest accuracy, suggesting that adding

Conclusion and outlook

- Model combining hands and mouth as input achieved best test accuracy and
- the mouth area can improve models
- Mouth on its own surprisingly with decent accuracy of 40.7%, underlines usefulness of the mouth area to differentiate signs
- Inclusion of the mouth area did not always perform the best per class
- Possible reasons:
 - Mouthing didn't always accompany signs due to disambiguation by context
 - Low resolution (640x360px) of original videos results into poor video quality of the mouth area
- Small amount of instances per gloss could be reason for relatively low scores

performed the best in disambiguating hand signs

- Results give insights into how useful the mouth region can be for ASLR
- Consider role of context for further work
- Possible incorporation of modelling of mouth area into state-of-the-art ASLR and ASLT systems
- Extend for sign languages other than DGS
- Explore benefits of utilizing other non-manual features, such as eye gaze, blinks, cheeks, shoulders or head movements

Supported by the German Federal Ministry of Education & Research (BMBF) through project SocialWear (grant 01IW20002) and Agence Nationale de la Recherche (ANR) and Deutsche Forschungsgemeinschaft (DFG) under the trilateral ANRDFG-JST call for project KEEPHA.

Contact details

Dinh Nam Pham, dinh_nam.pham@dfki.de Vera Czehmann, vera.czehmann@dfki.de Eleftherios Avramidis, eleftherios.avramidis@dfki.de